Airborne wind energy (AWE) is a promising source of renewable energy, with a potential of offering great and reliable energy yields. However, in addition to the usual power intermittency of renewable source of energies, AWE systems have a large and periodic fluctuation of their power output, and even consume power at certain phases of their orbit in some modes of power generation. These fluctuations may become a significant obstacle to a large-scale deployment of AWE systems in the power grid. For a large AWE farm, these fluctuations can be mitigated by power averaging, at the expense of fixing the AWE systems orbit times. This requirement removes the possibility for individual AWE systems within a wind farm to optimize their orbit time for their specific, local wind conditions, entailing a loss of performance. In order to assess the viability of mitigating the power fluctuation by power averaging at the wind farm level, this paper quantifies the loss of performance it yields.