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Abstract

For classical horizontal axis wind turbines, there are many available ’engineering models’ that describe the
relationship between unsteady induction factors and the nondimensional parameters describing the turbine’s per-
formance, such as thrust coefficient. There is, as of yet, no such simple unsteady actuator annulus relationship
suitable for multiple-kite airborne wind energy systems (MAWES). This work approximates such a relationship
from the Biot-Savart integral of a frozen, periodic vortex tube representing the geometry of a simplified pumping-
cycle MAWES. A comparison is made between the behavior of a MAWES as predicted with this new actuator
annulus relationship and with the classic Pitt-Peters model.
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1 Introduction

Multi-kite airborne wind energy systems (MAWES) connect two or more equivalent kites via secondary tethers
to a main tether. As the kites orbit around the main tether, the MAWES can produce power as the main tether
reels-in and out, turning a generator. MAWES induction models may[1] need to include unsteady effects in order
to give reasonable results. To the authors’ knowledge, no unsteady induction model has yet been developed for
such geometries. It is uncertain whether the many existing rotor-specific engineering models[2][3][4][5][6] would
be appropriate for MAWES because rotor and MAWES geometry have some key differences:

• reel-out The MAWES moves with the freestream during reel-out, and against it during reel-in. This leads
to a low apparent velocity during reel-out and a high one during reel-in. As such, the wake’s helical vortex system
will be periodically scrunched, as would occur during large periodic jumps in a rotor’s tip-speed-ratio.

• radial expansion The efficiency of a MAWES increases by increasing the kites’ flight radius during reel-in.
This means that the helical vortex system is not wrapped around a cylindrical body, but a tube (body-of-rotation)
with periodically increasing and decreasing radius.

• elevation angle The elevation angle is the angle between the main tether and the horizontal, allowing the
MAWES to fly at high altitudes. Due to reel-out along the elevation angle, the wake will be shed from a periodically
changing altitude. Then, the vortex system centerline will meander up and down, rather than laying linearly.

This paper proposes an engineering model to predict the unsteady, axisymmetric induction experienced by the
MAWES; the asymmetric effects of the elevation angle are resigned to future work. The development of such a
model occurs in multiple steps: the MAWES geometry is simplified with a number of assumptions (Section 2) to
allow the Biot-Savart integral to be evaluated and approximated (Section 3). The resulting model predicts induction
behavior (Section 4), leading to some conclusions (Section 5).
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2 Assumptions

After simplifying the MAWES geometry, we will make some assumptions typical for the derivation of engineering
induction models, and some atypical assumptions that reduce the wake complexity.

Geometric assumptions To focus on axisymmetric effects, we assume that the axis of kite rotation, the main
tether, and the dominant wind direction are parallel. Under a uniform freestream wind u∞ and uniform kite loading
among the K kites, only the radial r̂ and downwind x̂ coordinates remain. These coordinates move in time to be
centered at the midpoint of the kites. A sketch of the geometry in these coordinates is given in Figure 1.
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Figure 1: A sketch of MAWES and wake geometry in r̂, x̂ plane, during reel-out phase t ∈ (0,τ].

One full pumping-cycle is one reel-out phase and one reel-in phase, with total period T . The nondimensional
parameter τ is the ratio between the reeling-out time and the total period. The nondimensional time is t ∈ (0,1],
such that the dimensional time is tT , in seconds.

Let’s define the reel-out factor f as the ratio between the tether extension speed and the freestream wind speed.
Then, we assume that there is a constant reel-out factor ( fA) during reel-out and a constant reel-in factor ( fB) during
reel-in. For periodic orbits, the downstream distance reeled-out must be reclaimed during reel-in: fB =− fA

τ

1−τ
.

We will assume that the flight radius expands linearly during reel-out, and contracts linearly during reel-in. Then,
the maximum radius occurs at maximum tether extension; the minimum radius, at maximum tether retraction. The
radial position of the kite’s center of gravity is defined as % b, where % is the relative flight-path radius at any
instant, and b is the kite span. The kite is assumed to travel with its spanwise direction along r̂ such that the kite’s
outer and inner wingtips, respectively, have radial locations (%+ 1

2 )b and (%− 1
2 )b.

We can define a nondimensional parameter (β := u∞T
b ) that describes the relative distance by which one fluid

element is convected over the course of the period. We also define a nondimensional relative convection distance
Λ describing the ratio between a convection distance and the radial position of the kites’ outer wingtips. Then, the
vorticity shed during one reel-out phase and one reel-in phase is convected, respectively, over distances LA and LB,
with associated relative convection distances ΛA and ΛB:

LA = bβ (1− fA)τ, LB = bβ

(
1−
(
1− fA

)
τ

)
, L = LA +LB = bβ , ΛA =

β (1− fA)τ
1
2+ %max

, ΛB =
β (1− (1− fA)τ)

1
2+ %max

. (1)

To focus our attention on the impact of reel-out, the angular velocity is assumed constant: Ω = 2πW
T . Here, W

is the winding number of the MAWES trajectory. The pitch of the resulting vortex helix system is assumed to
be independent of the helix’s radius, with a constant value during reel-out (hA) and another during reel-in (hB).
Similarly, we assume a constant thrust coefficient during reel-out (CTA) and another (CTB) during reel-in.

Typical vortex tube assumptions Assuming a large tip-speed-ratio, the wake behind the MAWES is represented
by the summation of frozen vortex tubes. As is frequently done in such models - described well in [2] and [7] - we
assume negligible wake expansion (radial induction) and rotation (tangential induction); an equivalent circulation
along each kite, which takes one characteristic value during reel-out and another during reel-in; and an infinite
number of kites. These assumptions are made for the sake of simplicity, though they represent large approximations
to reality.

Due to the linear flight radius expansion and contraction, the vorticity shed from the kites’ outer wingtips will
form a tube of stacked conic-section segments. The vorticity shed from the inner wingtips will give a similar
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(a) The full wake (b) The reduced wake: inner wingtip, radial, and longitu-
dinal vortex surfaces removed; observation point shifted
to axis

Figure 2: A sketch of the MAWES frozen-wake vortex tubes. Legend: observation path/point (bold), longitudinal
vortex tube (solid), tangential vortex tube (dashed), radial vortex annulus (dotted), for outer wingtip (gray), and
inner wingtip (black). Vortex surfaces are continuous: spacing indicates local intensity.

conic-section tube with a smaller radius. Naturally, the path followed by the kite root (mid-span) will be between
the outer tube and the inner tube. As this engineering model would likely be used for optimization or control, we
concern ourselves exclusively with the induction as observed at the kite root, where a Pitot tube would be mounted.
This wake geometry is sketched in Figure 2a.

Having neglected radial and tangential induction, the model should only be used to predict axial induction. Due
to symmetry and cross-product arguments, neither the radial- nor longitudinal-components of vorticity will create
axial-direction induction. Consequently, only the tangential components of vorticity will be considered.

Assumptions for wake reduction Consider a semi-infinite vortex tube of arbitrary cross-section with constant
vortex intensity γ . Now, let’s take a cross-sectional slice of the vortex tube. On this slice, it is known[8] that the
induced velocity outside of the tube’s perimeter will be zero, and the induced velocity inside of the tube’s perimeter
will be constant. If the conic-sections that make up the wake are long in comparison to their radius (Λ� 1), the
outer wingtip vortex tube will contribute significantly more to the induction observed at the kite root than the inner
wingtip vortex tube. Since the goal is an engineering model rather than a high-fidelity model, we assume, then,
that the vorticity shed by the inner wingtips is negligible.

Furthermore, if the induction is roughly radially-independent within the vortex tube, then the observation point can
be moved to any interior radial position. The most convenient observation point is on the axis, as symmetry greatly
simplifies the Biot-Savart integral. On the basis of these assumptions, we simplify the full vortex tube structure
shown in Figure 2a to the reduced structure shown in Figure 2b.

Next, we will integrate the Biot-Savart induction over this structure, in order to approximate the induction factor.

3 The proposed engineering model

In this section, we will find the Biot-Savart integral for a tangential conic section, use this integral to propose an
engineering model, and give an integral to use when assessing the wake-reduction assumptions.

The velocity induced by a tangential conic section of uniform vortex intensity, as observed on the axis The
axial-direction velocity induced at an observation point (r,x) by a vortex ring of circulation Γ and radius R is
known[7] to be uxring(Γ,r,x,R). Then, the induced velocity at an observation point on the ring’s axis can be found:

uxring(Γ,r,x,R) =
Γ

2π

(
R2−r2−x2

(r−R)2+x2 E
(

4rR
(r+R)2+x2

)
+K

(
4rR

(r+R)2+x2

))
√
(r+R)2 + x2

⇒ uxring(Γ,0,x,R) =
Γ

2
R2

(R2 + x2)3/2 . (2)
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Let’s form a vortex tube along the axis x̂ by stacking rings of contant intensity γ and variable radius R(s) at
positions x(s) for s ∈ [0,1]. (The intensity is defined with respect to the circulation: Γ =

´ 1
0 γ

dx
ds ds.) If the vortex

tube is a conic section, it can be described with linear parameterizations R(s) = R0 +(R1−R0)s and x(s) = x0 +
(x1− x0)s. This will give an x̂-direction induction at the cylindrical coordinates (0,0) equal to:

ux(γ,R0,R1,x0,x1) =

ˆ 1

0

γ

2
R(s)2 ds(

R(s)2 + x(s)2
)3/2

=
γ

2

 (x1− x0)(R1−R0)
2 (`1− `0

)(
(R1−R0)2 +(x1− x0)2

)3/2
+

(x1− x0)
(
`2 + `3

)(
(R1−R0)2 +(x1− x0)2

)
 , (3a)

`0 = log

(√(
R2

0 + x2
0

)(
(R1−R0)2 +(x1− x0)2

)
+R0(R1−R0)+ x0(x1− x0)

)
, `2 =

R0(R1−R0)+ x0(x0− x1)√
R2

0 + x2
0

, (3b)

`1 = log

(√(
R2

1 + x2
1

)(
(R1−R0)2 +(x1− x0)2

)
+R1(R1−R0)+ x1(x1− x0)

)
, `3 =

R1(R0−R1)+ x1(x1− x0)√
R2

1 + x2
1

. (3c)

As a sanity check, (3) gives the known[8] induction from a finite and semi-infinite cylinder on their axes:

ux(γ,R,R,x0,x1) =
γ

2

 x1√
R2 + x2

1

− x0√
R2 + x2

0

 , lim
x1→∞

ux(γ,R,R,0,x1) =
γ

2
. (4)

Now, we approximate the MAWES induction by assembling the reduced-wake from tangential conic sections.

The engineering model, assembled from a periodic conic-section vortex tube Given the assumed geometry,
the wake is represented as a semi-infinite and periodic stack of tangential conic sections. Let’s designate conic-
sections shed during reel-out and reel-in, respectively, as having types A and B. Then, the wake of a reeling-out
MAWES will consist of one partial conic section of type A , followed by full conic sections of type B, A , B...
This order is reversed for a reeling-in MAWES.

For the assumed linearly-expanding radius, type A conic sections start with radius Rmax = (%max + 1
2 )b and end

with radius Rmin = (%min + 1
2 )b. Conic sections of type B start with radius Rmin and end with radius Rmax. The

dimensions of the partial conic section - length L0(t) and initial radius R0(t) = (%0 (t)+ 1
2 )b - and the reel-out

factor f (t) can be found with:

f (t) =

1− fA

1+ fAτ

1−τ

L0(t) =

bβ (1− fA)t

bβ

(
1+ fAτ

1−τ

)
(t− τ)

%0 (t) =

%min +
t
τ
(%max − %min) for 0 < t ≤ τ,

%max +
t−τ

1−τ
(%min − %max) for τ < t ≤ 1.

(5)

The pitch with which helical vortices would wrap around a conic section is found with h = π
u(1− f )

Ω
(1+
√

1−CT)
such that vortex tube models are consistent[8] with axial momentum theory. This gives pitches hA and hB for
sections of type A and B, respectively, as:

hA =
1
2

bβ (1− fA)

(
1+
√

1−CTA

W

)
, hB =

1
2

bβ

(
1+

fAτ

1− τ

)(
1+
√

1−CTB

W

)
. (6)

The vortex intensities of type A and B conic sections - respectively, γA and γB - are found by distributing the
sections’ circulations - respectively, ΓA and ΓB - over the pitch. That is: γA = ΓA

hA
and γB = ΓB

hB
. The Kutta-Joukowski

expression gives the relationship between the circulation and the thrust coefficient.

CT =
KρΩr′Γ1dr′

1
2 ρu2

∞(1− f )2(2πr′dr′)
= Γ

2TW
b2β 2(1− f )2 ⇒ ΓA =

b2

T
β 2CTA(1− fA)

2

2W
, ΓB =

b2

T
β 2CTB(1+ fA

τ

1−τ
)2

2W
, (7)

where Γ1 is the circulation in one kite and Γ = KΓ1. As thrust points axially and the tangential induction is
negligible, the velocity used in the scalar Kutta-Joukowski expression is the angular velocity.
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According to the wake-reduction assumptions, we now approximate the axial-direction induced-velocity at the kite
root as ui(t). This induced velocity is found using the induced velocities during reel-out ui,A and reel-in ui,B and
an infinite sum where M = N = P = Q = ∞:

ui(t) =

ui,A for 0 < t ≤ τ,

ui,B for τ < t ≤ 1,
(8a)

ui,A ≈ ux
(
γA, R0, Rmin, 0, L0

)
+∑

M
m=1ux

(
γB, Rmin, Rmax, L0 +(m−1)L, L0 +(m−1)L+LB

)
... (8b)

+∑
N
n=1ux

(
γA, Rmax, Rmin, L0 +(n−1)L+LB, L0 +nL

)
,

ui,B ≈ ux
(
γB, R0, Rmax, 0, L0

)
+∑

P
p=1ux

(
γA, Rmax, Rmin, L0 +(p−1)L, L0 +(p−1)L+LA

)
... (8c)

+∑
Q
q=1ux

(
γB, Rmin, Rmax, L0 +(q−1)L+LA, L0 +qL

)
.

Finally, we normalize the induced velocity using the definition of the induction factor a(t) := ui(t)
u∞(1− f (t)) .

One logical method of approximating an infinite sum is truncation. If the relative convection lengths ΛA and ΛB
are much greater than 1, it is likely that only the first partial conic section and the first full conic section are already
responsible for the majority of the induction. In this case, we might set M = P = 1 and N = Q = 0.

The numerical integral without wake-reduction To assess the impact of the wake-reduction assumptions, we
might numerically integrate the Biot-Savart expression for both tangential vortex tubes, as observed at the kite root.
We can compute the induction factor from the induced velocity ui,num(t), using a large number of shed periods S:

ui,num(t) =
ˆ 2S+1

0

(
uxring

(
Γ(s, t), %0(t)b, x(s, t), Rout(s, t)

)
−uxring

(
Γ(s, t), %0(t)b, x(s, t), Rin(s)

))
ds. (9)

Here, Rout(s, t) is the radius of the outer wingtip’s vortex tube found by applying Rmin = (%min +
1
2 )b and Rmax =

(%max +
1
2 )b to (10). Similarly, Rin(s, t) is the radius of the inner wingtip’s vortex tube, found by applying Rmin =

(%min − 1
2 )b and Rmax = (%max − 1

2 )b to (10), with step function U(·):

R(s, t) =



(
R0 +(Rmin−R0)s

)
U
(
(s)(1− s)

)
+∑

S
n=1

(
Rmin +(Rmax−Rmin)(s−2n+1)

)
U
(
(s−2n+1)(2n− s)

)
...

+∑
S
n=1

(
Rmax +(Rmin−Rmax)(s−2n)

)
U
(
(s−2n)(2n+1− s)

)
for 0 < t ≤ τ,(

R0 +(Rmax−R0)s
)

U
(
(s)(1− s)

)
+∑

S
n=1

(
Rmax +(Rmin−Rmax)(s−2n+1)

)
U
(
(s−2n+1)(2n− s)

)
...

+∑
S
n=1

(
Rmin +(Rmax−Rmin)(s−2n)

)
U
(
(s−2n)(2n+1− s)

)
for τ < t ≤ 1.

(10)

The starting radius R0 is found as (%0 + 1
2 )b for the outer vortex tube, and (%0 − 1

2 )b for the inner vortex tube,
with %0 given by (8a). Then, the parameterized axial position x(s) of the rings and the circulation Γ(s) for vortex
intensities γA and γB are:

Γ =



γAL0U
(
(s)(1− s)

)
...

+∑
S
n=1 γBLBU

(
(s−2n+1)(2n− s)

)
...

+∑
S
n=1 γALAU

(
(s−2n)(2n+1− s)

)
,

γBL0U
(
(s)(1− s)

)
...

+∑
S
n=1 γALAU

(
(s−2n+1)(2n− s)

)
...

+∑
S
n=1 γBLBU

(
(s−2n)(2n+1− s)

)
,

x =



L0sU
(
(s)(1− s)

)
... for 0 < t ≤ τ

+∑
S
n=1

(
L0 +(n−1)L+LB(s−2n+1)

)
U
(
(s−2n+1)(2n− s)

)
...

+∑
S
n=1

(
L0 +(n−1)L+LB +LA(s−2n)

)
U
(
(s−2n)(2n+1− s)

)
,

L0sU
(
(s)(1− s)

)
... for τ < t ≤ 1

+∑
S
n=1

(
L0 +(n−1)L+LA(s−2n+1)

)
U
(
(s−2n+1)(2n− s)

)
...

+∑
S
n=1

(
L0 +(n−1)L+LA +LB(s−2n)

)
U
(
(s−2n)(2n+1− s)

)
.

(11)

Though the integral (9) is not an exact solution, due to the multiple strong underlying assumptions given in section
2, it is closer to a physical solution than the engineering model. Consequently, this numerical integral can be used
to consider the impact of wake-reduction on the proposed engineering model.
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4 Trends in the induction behavior
Using certain relevant test cases and computation models, we will compare the trends in the induction behavior.

The test cases and methods under comparison The induction behavior will be considered for a selection of
7 relevant test-cases - for illustrative combinations of typical horizontal axis wind turbine (HAWT) or MAWES
parameters - as defined in Table 1a. These test-cases are scaled by values associated with the Ampyx AP2 kite[1]
(b = 5.5m and T = 45s), with some nondimensional parameters fixed (β = 98, CTA = 8/9, W = 5, and τ = 3/4) to
give a more even comparison.

Table 1: Test case parameters and computation times

(HAWT typical) fA (Loyd optimal)

0 1/3

(M
A

W
E

S
ty

pi
ca

l)
C

T
B

(B
et

z
op

tim
al

) 8/9

%min
1/2 6

%
m

ax

1/2 1

6

%min
1/2 6

%
m

ax

1/2

6

1/9

%min
1/2 6

%
m

ax

1/2 2

6 4 3

%min
1/2 6

%
m

ax

1/2 5

6 7 6
%= 1

2 (typical HAWT); %= 6 (typical average MAWES); %∈ [ 1
2 ,6] (exaggerated expansion)

(a) Index numbers (circled) of test cases, assigning parameters

model wall-time [s] scaled [-]
Steady 2.7 ·10−6 1
Pitt/Peters 2.4 ·10−2 8.9 ·103

Integration 2.8 ·10−1 1.1 ·105

Engineering 4.0 ·10−4 1.5 ·102

(b) Approximate average dimensional and scaled wall-
times per model, when solved in Mathematica on a
personal computer.

We compare the induction behavior predicted by four models. For each model, we plot a(t) vs t over the selected
test cases (Figure 3). Further, we record the average computation times for a(t) (Table 1b). The four models are:

• Steady the steady axial momentum theory with a = 1
2 (1−

√
1−CT).

• Pitt/Peters the corrected axisymmetric Pitt/Peters model [9] such that 16
3π

ȧ+4a(1−a)=CT, using the deriva-
tive ȧ = 1

T
da
dt and the initial condition of a(0) = 1

2 (1−
√

1−CTB).
• Integration the numerical integration of (9) including both wingtips’ tangential vortex tubes, as observed at
the kite’s radial location, with S = 10.
• Engineering the engineering approximation given by (8) with M = P = 1 and N = Q = 0.

As none of these low-order models is a valid verification model, the goal is to determine whether the models are
able to represent reel-out and radial expansion in a reasonable manner. This behavior is described below.

The steady HAWT case: case 1 The four models predict the same behavior: a steady-state value of 1
3 .

The unsteady HAWT case: case 2 The four models show the same steady-state values. Here, the numerical
integral model (and it’s overlapping engineering model) predict a slightly faster response time than the Pitt/Peters
model. Further study would be needed to see how the response time predicted by the numerical integral depends
on those assumptions typically made for frozen-wake vortex tubes without wake expansion.

The case with large flight radius and a CT jump: case 3 The predicted steady-state values are again equal for
all models though the engineering model responds slower at a larger radius than the numerical integration model.
This suggests that for increasing radius, the wake-reduction approximations become less accurate as % increases.
This is because Λ will decrease as %max increases, and the wake-reduction assumptions relied on large Λ values.

The case with radial expansion and a CT jump: case 4 With radial expansion, the steady state values of the
numerical integral are offset from those of the steady and Pitt/Peters model. This offset is a slight decrease during
reel-out (t ∈ (0,τ]), and a slight increase during reel-in (t ∈ (τ,1]). This offset appears reasonable, as the tube
diameter at the kite’s x̂ position is increasing during reel-out and decreasing during reel-in. From (2) we know
that a vortex ring of equivalent circulation will induce less velocity as its radius increases. The engineering model
exaggerates the offsets predicted by the numerical model. On another note, when % takes the value it had in case 2
(at t = 0), the engineering model’s response speed is the same as in case 2; when % takes the case 3 value (at t = τ),
the case 3 response speed is seen.
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Figure 3: Induction factors compared to time for selected test cases. The legend is as follows: steady model (solid);
Pitt/Peters model (dashed); numerical integration model (dotted); and proposed engineering model (dash-dotted).
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The cases with reel-out and a CT jump: cases 5 and 6 The behaviors in cases 5 and 6 shows similar trends to
those in cases 2 and 3. The response times during reel-out and reel-in are, respectively, stretched and condensed, as
the apparent wind is slower during reel-in and faster during reel-out. That is, the apparent wind-speed effectively
re-scales the behavior with respect to time. Due to this re-scaling effect, the reel-in predictions of the numerical
integral and the engineering model are much closer together in case 6 than in case 3.

The MAWES case: case 7 This case shows the combined behaviors of the previous test cases. With respect
to steady-state values: the engineering model exaggerates the offsets predicted by the numerical integral from
the steady and rotor-derived Pitt/Peters model. During reel-out, the response time of the engineering model is
approximately that of the numerical model; in reel-in, the engineering model is slow in comparison to the numerical
model. After including the effects of reel-out and radial-expansion, the response speed of all three unsteady models
are comparable.

Based on the trends described for the above test cases, we now summarize some conclusions.

5 Conclusion

This paper proposes an engineering model to predict the unsteady induction over the MAWES actuator annulus.
This engineering model demonstrates certain changes to the steady-state induction behavior of a simplified ax-
isymmetric MAWES undergoing radial expansion and contraction, that cannot be predicted with either steady or
rotor-specific unsteady models. The reasonable qualitative behavior - and fast computation time - of the engineer-
ing model suggest that it may be useful where the influence of reel-out and/or radial expansion must be considered,
but fast computation time is more important than perfect accuracy.

Subject to verification and validation, this engineering model appears to be a first step towards a fast, unsteady
induction model suitable to MAWES geometry and operating strategies. In addition to validation, future work
should expand the unsteady induction model to include the asymmetric effects relevant to MAWES: nonzero
elevation angle, tilt angle, and nonuniform thrust per kite.
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